	National 5 Chemistry											
	chem Unit 1.4a pH chem	Lesso	Red	Amber	Green							
53	The pH scale is a continuous range of numbers: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Acidic solutions neutral Alkaline solutions the pH scale runs from 0 to 14 it is possible to get pH values below 0 and above 14 		$\overline{\mathbf{S}}$:	Û							
55 56	 Water is neutral as it dissociates according to the equation: H₂O_(l) → H⁺_(aq) + OH⁻_(aq) dissociation produces equal concentrations of hydrogen H⁺ ions & hydroxide OH⁻ ions. At any time, only a few water molecules are dissociated into free ions. The symbol → indicates that a reaction is reversible and occurs in both directions. 											
54 57 58	 The acidity, alkalinity and neutral nature of a solution depends on H⁺ and OH⁻ ions. a <u>neutral</u> solution has equal concentrations of H⁺(aq) and OH⁻(aq) ions. acidic solutions have a higher concentration of H⁺(aq) ions than OH⁻(aq) and have a pH below 7. alkaline solutions have a higher concentration of OH⁻(aq) ions than H⁺(aq) ions 											
59 60	 The pH of a acidic/alkaline solution heads towards pH=7 when diluted with water: dilution of an acidic solution with water will decrease the concentration of H⁺(aq) and the pH will increase towards 7. dilution of an alkaline solution with water will decrease the concentration of OH⁻(aq) and the pH will decrease towards 7. 											
61	Soluble <i>non-metal</i> oxides dissolve in water forming acidic solutions e.g. CO_2 , NO_2 and SO_2		$\overline{\mbox{\scriptsize ($)}}$	\bigcirc	\odot							
62	Soluble <i>metal</i> oxides dissolve in water to form alkaline solutions: metal oxide + water> metal hydroxide		$\overline{\mathbf{O}}$		\odot							
63	 Metal oxides, metal hydroxides, metal carbonates & ammonia neutralise acids and are called bases. only bases that dissolve in water form alkaline solutions all bases neutralise acids and form water. 		$\overline{\ensuremath{\mathfrak{S}}}$:	(;)							

	National E Chamistry	п	Tra	ffic L	ight
	JABNational 5 chemistryJABchemUnit 1.4b Neutralisation Reactionschem	Lesso	Red	Amber	Green
64	 A neutralisation reaction is one in which a base reacts with an acid to form water. A salt is also formed in this reaction. 		$\overline{\ensuremath{\mathfrak{S}}}$		\odot
65a	Hydrogen ions in acids react with oxide ions in metal oxides to form water acid + metal oxide salt + water		$\overline{\ensuremath{\mathfrak{S}}}$		\odot
65b	Hydrogen ions in acids react with hydroxide ions in alkalis to form water. acid + metal hydroxide → salt + water		8	☺	0
65c	H+ ions in acids react with carbonate ions in metal carbonates to form water and carbon dioxide. $acid + \frac{metal}{carbonate} \rightarrow salt + water + \frac{carbon}{dioxide}$		8	☺	:
66	Salts are formed in the reaction of acids with bases. • acids supply the 2 nd name of the salt: Name of Acid Hydrochloric acid Sulphuric Acid Nitric Acid 2 nd Name of Salt Chloride Sulphate Nitrate • sodium sulphate + water acid hydroxide		☺		☺
67	Spectator ions can be identified and the equations can be rewritten omitting these ions: sodium hydroxide + sulphuric acid \rightarrow sodium sulphate + Water $2NaOH$ + H_2SO_4 \rightarrow Na_2SO_4 + H_2O Rewrite to include all ions separately $2Na^+$ + $2OH^-$ + $2H^+$ + SO_4^{2-} \rightarrow $2Na^+$ + SO_4^{2-} + $2H_2O$ Cancel out any spectator ions which appear on both sides $2Na^+$ + $2OH^-$ + $2H^+$ + SO_4^{2-} \rightarrow $2Na^+$ + SO_4^{2-} + $2H_2O$ Re-write equation omitting spectator ions $2OH^-$ + $2H^+$ \rightarrow $2H_2O$		8		0
68	For neutralisation reactions, equations can be written omitting spectator ions:For metal oxides $2H^+(aq) + 0^{2-}(aq) \longrightarrow H_2O(l)$ for metal hydroxides $H^+(aq) + 0H^-(aq) \longrightarrow H_2O(l)$ for aqueous metal carbonates $2H^+(aq) + CO_3^{2-}(aq) \longrightarrow H_2O(l) + CO_2(g)$ for insoluble metal carbonates $2H^+(aq) + CO_3^{2-}(s) \longrightarrow H_2O(l) + CO_2(g)$		8	•	:
69	In an acid-base titration, the concentration of the acid or base is determined by accurately measuring the volumes used in the neutralisation reaction. • an indicator can be added to show the end-point of the reaction. Image: pipette is filled with hydrochloric acid of a known concentration and the volume of the hydrochloric acid in the burette is filled with hydrochloric acid of a known concentration and the volume of the hydrochloric acid in the burette is recorded (at the bottom of the meniscus). Hydrochloric acid is added from the burette into the flask until the colour in the flask changes. The final volume is recorded. Pipettes are used to transfer exact quantities of solutions. The line towards the top of the pipette shows where the solution should be taken up to using a pipette filler for safety. white tile white tile solutions is added towards the top of the pipette shows where the solution should be taken up to using a pipette filler for safety. white tile tile tile tile tile tile tile t		$\overline{\mathfrak{S}}$		☺

	 Given a balanced equation for the reaction occurring in any titration: the concentration of one reactant can be calculated given the concentration of the other reactant and the volumes of both solutions 		
70	e.g. A 50·0 cm ³ sample of contaminated water containing chromate ions was titrated and found to require 27·4 cm ³ of 0·0200 mol l ⁻¹ iron(II) sulphate solution to reach the end-point. Calculate the chromate ion concentration, in mol l ⁻¹ , present in the sample of water. no of mol Fe ²⁺ = volume x concentration = 0.0274 x 0.02 = 5.48x10 ⁻⁴ mol $3Fe^{2+} + CrO_4^{2-} + 8H^+ \longrightarrow 3Fe^{3+} + Cr^{3+} + 4H_2O$ $\xrightarrow{3mol & 1mol \\ 5.48x10^{-4}mol & 1.83x10^{-4}mol \\ concentration = \frac{no of mol}{volume} = \frac{1.83x10^{-4} mol}{0.05 \text{ litres}} = 3.65x10^{-3} \text{ mol } 1^{-1}$	8	٢

Na	15	Past Paper Question Bank									AReland					
Traffic	: Lights				l	Jnit	1.4	a pł	1				J	201	-ne	W
Outcome	<u>Original</u> <u>Specimen</u> Paper	<u>New</u> <u>Specimen</u> Paper	<u>Nat5</u> 2014	<u>Nat5</u> 2015	<u>Nat5</u> 2016	<u>Nat5</u> 2017	<u>Nat5</u> 2018	<u>Nat5</u> 2019								
53		L6b					L13b									
55 56							L10a(ii)									
54 57 58	mc7 L3a	mc7 L4a	mc5	L4b	L5d		mc8									
59 60							mc9	mc11								
61				mc10	mc8	L11a										
62			mc6	mc10												
63				mc11		mc5		mc12								
64																
65a				L4c												
65b			L7c(i)													
65c	L4a(ii)	L5a(ii)					L1a									
66							L10d	L2c L11b								
67		mc24	mc8	mc18		mc6		mc25								
68																
69																
70			L13b	L15b												
74																
75 76							mc25	L11c								
Marking Scheme	Back of Paper	Back of Paper	<u>SQA Nat5</u> 2014 Msch	<u>SQA Nat5</u> 2015 Msch	<u>SQA Nat5</u> 2016 Msch	<u>SQA Nat5</u> 2017 Msch	<u>SQA Nat5</u> 2018 Msch	<u>SQA Nat5</u> 2019 Msch								

Nat5	Answer	% Correct	Reasoning
2014			I A All aqueous solutions contain both hydrogen and hydroxide solutions
2014	C	75	B All aqueous solutions contain both hydrogen and hydroxide solutions
5		15	☑C Acids contain more hydrogen ions than hydroxide ions
			🗷 D Alkalis contain more hydroxide ions than hydrogen ions
2014			☑A calcium oxide is a soluble metal oxide which dissolves to form an alkali
	Α	59	EB nickel oxide is a non-soluble metal oxide so has no effect on pH
6		07	EC nitrogen dioxide is a soluble non-metal oxide and dissolves to form an acid
			ED supplur dioxide is a soluble non-metal oxide and dissolves to form an acid
			K [*] appears on both sides of equation
2014	٨	00	↓ ↓
8	A	ØØ	$H^{+}_{(aq)}$ + $NO_{3^{-}_{(aq)}}$ + $K^{+}_{(aq)}$ + $OH^{-}_{(aq)}$ \rightarrow $K^{+}_{(aq)}$ + $NO_{3^{-}_{(aq)}}$ + $H_2O_{(l)}$
Ŭ			
			NO3 ⁻ appears on both sides of equation
2015			A carbon dioxide is a non-metal oxide and forms an acid when added to water
10	R	59	⊠B copper (11) oxide is insoluble in water and does not change the pH of water
		07	EC sodium oxide is a metal oxide and forms an alkali when added to water
			BD sulphur dioxide is a non-metal oxide and forms an acid when added to water
			🗷 A hydrochloric acid + sodium carbonate> sodium chloride + water + carbon dioxide
2015	D	16	$oxtime{D}$ B sodium chloride does not react with acids as it is a salt not a base
11	В	40	■C hydrochloric acid + sodium hydroxide → sodium chloride + water
			IN hudnochlanic soid u sodium svide — A sodium chlanide u water
			Spectaton ions appear chemically unchanged on both sides of a chemical equation:
			Na ⁺ appears on both sides of equation
2015	٨	20	
18	A	30	$2Na^{+}_{(aq)} + SO_{4}^{2^{-}}_{(aq)} + Ba^{2^{+}}_{(aq)} + 2CI^{-}_{(aq)} \rightarrow BaSO_{4(s)} + 2Na^{+}_{(aq)} + SO_{4}^{2^{-}}_{(aq)}$
			SU ^{4^c} appears on both sides of equation
2016	-		IMA TIN IS metal, tin oxide is insoluble no effect on pH
ο	С	63	MC supplur is a non-metal, supplur dioxide is a soluble non-metal oxide : nH/7 (acid)
0			ND sodium is a metal, sodium oxide is a soluble metal oxide : pH >7 (alkali)
2017			
-	Α	58	A base is a chemical which neutralises an acid to form water
5	/ \	50	e.g. metal hydroxides (alkalis), metal oxides and metal carbonates are bases
			Spectator ions appear chemically unchanged on both sides of a chemical equation:
2017			K ⁺ appears on both sides of equation
2017	R	72	
6	D	, ,	$Ag^{+}_{(aq)} + NO_{3^{-}(aq)} + K^{+}_{(aq)} + CI^{-}_{(aq)} \rightarrow AgCI_{(s)} + K^{+}_{(aq)} + NO_{3^{-}(aq)}$
			NO3 appears on both sides of equation
			■ An alkaline solution contains more OH ⁻ ions than H ⁺ ions (still contains some H ⁺)
2018	D		☑B An alkaline solution contains more OH ⁻ ions than H ⁺ ions
8	В	-	🗷C An acidic solution contains more $H^{\scriptscriptstyle +}$ ions than $OH^{\scriptscriptstyle -}$ ions
			■D A neutral solution contains equal numbers of H ⁺ ions and OH ⁻ ions

2010	С	-	🗷 A Diluting acids with water increases pH until it reaches pH=7							
<u>9</u>			⊠B Diluting acids with water increases pH until it reaches pH=7							
			$oxtimes$ C Diluting acids with water decreases the H $^{\scriptscriptstyle +}$ ion concentration as water is added							
•			${f ar{ar{u}}}{f D}$ Diluting acids with water decreases the H $^{\scriptscriptstyle +}$ ion concentration as water is added							
2018			🗷 A Filtration (Step Z) must occur before evaporation (Step X)							
			🗷 B Neutralisaton Step Y must be first step							
25	D	-	🗷C Neutralisaton Step Y must be first step							
			☑D Order: Neutralisation (Y) followed by Filtration (Z) followed by Evaporation (X)							
2019	D		🗷 A The pH of an alkaline solution will decrease to pH=7 on dilution							
) -	B The pH of an alkaline solution will decrease to pH=7 on dilution							
11			f ZC The concentration of OH ⁻ ions decreases on dilution							
**			$ ensuremath{\!$							
2010		4 -	🗹 A sodium oxide is a metal oxide (a type of base) and neutralises an acid to form water							
2019	٨		🗷 B calcium chloride does not react with acids and is not a base							
12	A		EC potassium nitrate does not react with acids and is not a base							
			🗷 D ammonium sulphate does not react with acids and is not a base							
			AqNO3(aq) + NaBr(aq) → NaNO3(aq) + AqBr(s)							
			Split solutions into ions							
2019			$Aq(aq) + NO_3^{-}(aq) + Na^{+}(aq) + Br^{-}(aq) \rightarrow Na^{+}(aq) + NO_3^{-}(aq) + AqBr(s)$							
	R	-	Indentify Spectator Ions and cancel out Spectator Ions							
25	U		$Aa(aa) + NO(aa) + Na(aa) + Br(aa) \rightarrow Na(aa) + NO(aa) + AaBr(s)$							
			Re-write equation without spectator ions							
			$A_{O}(a_{0})$ + $Br^{-}(a_{0}) \rightarrow A_{O}Br(c)$							

Nat5	Answer	Reasoning								
2014 7c (i)	Neutralisation	Neutralisation: Acid + Alkali> Salt + Water								
2015	hydrogen	Acids Hydrogen ion concentration greater than hydroxide ion concentration								
4h		Neutral Hydrogen ion concentration equal to hydroxide ion concentration								
	hydroxide	Alkali Hydrogen ion concentration less than hydroxide ion concentration								
2015 4c	Answer to include:	<u>1st Mark</u> : Calcium oxide as a base or forms an alkali when dissolved in water (must mention when dissolved in water) <u>2nd Mark</u> : Calcium oxide in water <u>neutralises</u> sulphur dioxide (must mention the word neutralise)								
2016	hydroxide	Nanorods are grown in a dilute solution of auric acid:								
5d	hydrogen	Acidic Solution Number of H ⁺ ions > Number of OH ⁻ ions Neutral Solution Number of H ⁺ ions = Number of OH ⁻ ions Alkaline Solution Number of OH ⁻ ions > Number of H ⁺ ions								
2017 11a	Answer to include:	Non-metal oxides like SO2 dissolve in water to form acids. As acid is formed the pH number will decrease below 7								
2018 1a	Carbon dioxide	hydrochloric acidcalcium carbonatecalcium chloride+water dioxidecarbon dioxideACID+METAL CARBONATE-SALT+WATER HCARBON DIOXIDE								
2018 10a(i)	N₂ + 3H₂ ← 2NH₃									
²⁰¹⁸ 10d	ammonium nitrate	ammonia + water hydroxide ammonium nitric ammonium hydroxide acid nitrate + water								
²⁰¹⁸ 13b	As halogen atom goes down group 7 the acidity decreases.	Any correct statement linking acidity to the position of the halogenThe acidity (of the carboxylic acids)As you go (up) from iodine to fluorine the acidityThe one at the top (of the group) has the highest acidityThe one that has the lowest acidity								
2019 2c	calcium oxalate	Acids react with bases to form salts. Oxalic acid reacts with calcium ions to form the salt calcium oxalate								
2019 11b	propanoic acid	acid + metal carbonate → salt + water + carbon dioxide propanoic + calcium → calcium + water + carbon acid carbonate → propanoate + water + dioxide								
2019 11c	One answer from:	no more solid reacts/ until it no longer reactssolid remains/is left (at bottom of the beaker)a gas is no longer produced no more fizzing/bubblingcalcium carbonate left (at the bottom)no more calcium carbonate reactsneutral/neutralised with a description of testing pH.								

Nat5 Past Paper Que								uestion Bank								
Traffic	Lights				(Jnit	1.4	a pł	-				J	ろじて	-ne	A NI
Outcome	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>
	<u>2000</u>	<u>2001</u>	<u>2002</u>	<u>2003</u>	<u>2004</u>	<u>2005</u>	<u>2006</u>	<u>2007</u>	<u>2008</u>	<u>2009</u>	<u>2010</u>	<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>2015</u>
53								L9b			L10a			L13a(i)		
55 56	mc19					L13b(ii)				mc24	mc17				mc20	
54 57 58		mc19	mc20			mc27 L13b(i)	mc23	mc20	mc21		mc19			mc18		L15a
59 60			mc17			mc19		mc19				mc22		mc20		
61	mc18				mc23			mc18		mc21			10c	mc23		mc24
62					mc23			mc18	mc22	mc21		mc21	mc21		mc22	mc24
63			mc21		mc24		mc24				mc22			mc22		mc25
64											mc23					
65a		mc20			L8a			L3b(i)								
65b			L7b			L14b										
65c	L11c			mc28		L2a(ii)		mc22	L12a	mc22 L13c		mc24	L11b		mc23	mc26
66								L15a	L13b						L11a	L14a(i)
67		L12a(i)	L9a	mc21	L6a	mc24	L11b(i) L11b(ii)	mc25		L15a	mc26	mc25	L13b(i) L13b(ii)	L2d		
68													mc22			
69																
70	L16	L12b	L8d	L8c	L16b	mc22				L12c(ii)	L13b	L11c(iii)				L15b(iii)
74																
75 76	L15a L15b			L9a L9b L9c						L13a L13b						
Marking Scheme	Not Published	Not Published	Not Published	<u>SQA Int2</u> 2003 MSch	<u>SQA Int2</u> 2004 MSch	<u>SQA Int2</u> 2005 MSch	<u>SQA Int2</u> 2006 MSch	<u>SQA Int2</u> 2007 MSch	<u>SQA Int2</u> 2008 MSch	<u>SQA Int2</u> 2009 MSch	<u>SQA Int2</u> 2010 MSch	<u>SQA Int2</u> 2011 MSch	<u>SQA Int2</u> 2012 MSch	<u>SQA Int2</u> 2013 MSch	<u>SQA Int2</u> 2014 MSch	SQA Int2 2015 MSch

Int2	Answer	% Correct	Reasoning
2000			🗷 A calcium oxide (metal oxide) dissolves in water to form an alkali
2000		22	🗷 B carbon dioxide (non-metal oxide) dissolves in water to form an acid
18	U	52	🗷C sulphur dioxide (non-metal oxide) dissolves in water to form an acid
			☑D zinc oxide is insoluble in water so will not change the pH of water from pH=7
2000			🗷 A At equilibrium, the rate of the forward and reverse reactions are equal
2000	Γ	42	B water has little dissociation into ions and the majority stays as molecules
19	U	16	EC Concentration of water if much greater than hydrogen ions
			☑D At equilibrium, concentration of reactants and products are constant
2001			■A acids contain more H ⁺ ions than OH ⁻ ions (some OH ⁻ ions present)
10	C	69	B neutral solutions contain equal numbers of H [*] and OH [*] ions
19	Ŭ		✓C acids contain more H ⁺ ions than OH ⁺ ion
			ED acids contain more H ions than OH ion
2001	-		EA Condensation: small molecules join together with water removed at the join
20	С	24	B Denydration: water is removed from a molecule forming a C=C double bond
20	•		LC Neutralisation: A lons reacting to form water D Precipitation: An insoluble solid is formed when two ions come together
2002			
2002		62	Action on Acid Effect on pH Effect on H ⁺ concentration
17 D	D	02	Dilution Increase to 7 Drecreases
			Type pH Ions in Solution
2002 20	٨	75	Acid $pH<7$ Concentration of H^+ > Concentration of OH^-
	A	C 1	Neutral e.g. pure water $pH=7$ Concentration of H^+ = Concentration of OH^-
			Alkali $pH>7$ Concentration of OH^- > Concentration of H^+
2002	•		A base is a chemical which neutralises an acid:
21	A	43	Alkalis Metal Oxide Metal Carbonate
21			(metal hydroxide)
			Pb^{2+} + $2NO_3^-$ + $2Na^+$ + $2I^- \rightarrow Pb^{2+}(I^-)_2$ + $2Na^+$ + $2NO_3^-$
2003	•		Cancel out any spectator ions which appear on both sides
21	A	16	$Pb^{2+} + 2NO_3^{-} + 2NO_4^{+} + 2I^{-} \rightarrow Pb^{2+}(I^{-})_2 + 2NO_4^{+} + 2NO_3^{-}$
61			Re-write equation omitting spectator ions
			Pb^{2^+} + $2I^- \rightarrow Pb^{2^+}(I^-)_2$
2000			${f f ar ar A}$ calcium hydroxide + hydrochloric acid $ ightarrow$ calcium chloride + water
2003	D	FO	$oxtime{D}$ B calcium carbonate + hydrochloric acid $ ightarrow$ calcium chloride + water + carbon dioxide
28	D	50	f ar C calcium oxide + hydrochloric acid $ ightarrow$ calcium chloride + water
			$\mathbb{E}\mathbb{D}$ calcium + hydrochloric acid \rightarrow calcium chloride + hydrogen (flammable!)
			🗷 A non-metal oxides e.g. carbon dioxide dissolve in water in form acids
2004	D	71	☑B copper oxide is insoluble in water (p8 of data book) so pH is unchanged
23	В	/ 4	🗷 C metal oxides e.g. sodium oxide dissolve in water in form alkali
			🗷 D non-metal oxides e.g. sulphur dioxide dissolve in water in form acids
2004			Bases neutralise acids:
24	Α	59	acid + alkali (metal hydroxide) —> salt + water
24	~ *		acıa + metai oxide —> salt + water acid + metal carbonate —> salt + water + carbon dioxide
2005			
10	D	69	Action on Acid Effect on pH Effect on H ⁺ concentration
19			Dilution Increase to / Drecreases

0005			n o. of mol H	12 50 4 = v	volume	x c oncentration = 0.02litres x 1 mol l^{-1} = 0.02mc)
2005		28		2KOH	+ H;	2504 → K2504 + 2H20	
22	U	20		2mol	1r	nol	
			0).04mol	0.0	02mol	
			Ba ²⁺ +	2NO3 ⁻	+ 2Na	$a^{+} + SO_4^{2-} \rightarrow Ba^{2+}SO_4^{2-} + 2Na^{+} + 2NO_3^{-}$	
2005				Cancel	out any s	spectator ions which appear on both sides	
21	A	83	Ba ²⁺ +	21003-	+ 2116	f^{+} + SO_4^{2-} \rightarrow $Ba^{2+}SO_4^{2-}$ + $2Na^{+}_4$ + $2NO_3^{-}_3$	
۲4	• -			-	Re-writ	e equation omitting spectator ions	
			Ba ²⁺ +		+	$SO_4^{2-} \rightarrow Ba^{2+}SO_4^{2-}$	
2005		T		Туре	pН	Ions in Solution	
2000	C	78		Acid	pH<7	Concentration of H ⁺ > Concentration of OH ⁻	
27				Neutral	pH=7	Concentration of H ⁺ = Concentration of OH ⁻	
		 				Concentration of OH > Concentration of H	1_Z
2006			MA Hyaroge ■D Lydroxiv	h H ion c	:0ncentr	ation decreases as acid is alluted from priso to pr	=0
23	A	79	SC At nH=6	concent	n concer ration o	f H^+ ione is areater the concentration of OH^- ions	
23	-		N Hvdroge	n H⁺ ion c	oncentr	ration decreases as acid is diluted from pH=3 to pH	 =6
2006			A base is a	chemica	which	neutralises an acid:	
2000	A	56			Alkalis	Metal Oxide Metal Carbonate	
24				(met	ral hydro	xide)	
2007			🗷 A carbon d	lioxide (n	on-metc	l oxide) dissolves in water to make an acidic solutio	'n
2007	R	76	⊠B Copper o	xide is in	soluble	in water (p8 of data booklet) ∴ pH unchanged	
18	D		⊠C Sodium a	xide (me	tal oxid	e) dissolves in water to make an alkaline solution	
		_	ED Sulphur	Dioxide (non-met	tal oxide) dissolves in water to make an acidic solut	ion
2007		77	A Rate of I	reaction	decreas	es as concentration of H ⁺ decreases	
10	D		B Concentr	'ation of	H ⁺ ions (decreases with dilution	
17			MC Electrico	Il conduct	livity ae	creases with allution as ion concentration decrease	25
		 		Tune		Tone in Solution	
2007		05		Acid	nH<7	Concentration of H ⁺ > Concentration of OH ⁻	
20	A	60		Neutral	pH=7	Concentration of H^+ = Concentration of OH^-	
				Alkali	рН>7	Concentration of OH^- > Concentration of H^+	
		1	🗷 A Copper +	· hydroch	loric aci	id \rightarrow no reaction as copper not reactive enough	
2007		51	⊠B copper o	xide + hy	drochlo	ric acid → copper chloride + water	
22	C	54	☑C copper c	arbonate	+ hydro	chloric acid→copper chloride + water + carbon dio.	xide
-			 ⊠D copper h	vdroxide	+ hydro	ochloric acid \rightarrow copper chloride + water	
2007			Sodium ions ar	nd chloride	z ions are	e both spectator ions as neither end up in the precipitate	2
25	A	52	(new substanc	e formed)	. As neit	her sodium ions and chloride ions are chemically changed	,
20	••	~ -	they are spect	tator ions.			
				Solution	Туре	Description	
2008	D	05		Acidic So	olution	Number of H^+ ions \rightarrow Number of OH^- ions	
21	D	25	1	Neutral S	olution	Number of H^+ ions = Number of OH^- ions	
				Alkaline S	olution	Number of OH^{-} ions > Number of H^{+} ions	
2000			⊠A non-met	al oxides	like car	bon dioxide dissolve to form acids	
2008 22	C	84	🗷 B copper (1	II) oxide	is insolu	uble in water (p8 of data booklet)	
	C		⊠C metal ox	ides like	potassiu	ım oxide dissolve to form alkalis	
			区D non-met	al oxides	like nitr	rogen dioxide dissolve to form acids	

			🗷 A metal oxide	बA metal oxides e.g. calcium oxide dissolve in water to form alkalis									
2009		01	⊠B non-metal a	xides e.g. carbon dioxide disso	lve in water to form acids								
21	D	10	⊠C non-metal c	xides e.g. sulphur dioxide disso	lve in water to form acids								
			⊠D zinc oxide i	s insoluble in water (p8 of date	i booklet) so pH is unchanged								
2009		_	Test	Test 1	Test 2								
2007	B	86	Result	Lime water turns milky	Blue-green flame colour								
22			Conclusion	Compound X is a carbonate	Compound X contains copper ions								
			🗷 A both forwa	rd and reverse reaction procee	d at equal rates								
2009		16	🗷 B water is ma	inly molecules with few ions									
24	D	40	⊠C water is ma	inly molecules with few ions									
			☑D rate of forw	ard reaction = rate of reverse rea	ction \therefore concentrations remain constant								
2010		4-	In a reversible	reaction at equilibrium:									
17	17 A	4/		Rate of forward reaction = Ra	te of reverse reaction								
17			Concentration o	f reactants and products are c	onstant but not equal								
2010			⊠A acidic solut	ions have a small number of Of	t ions in them								
10	R	79	⊠B acidic solut	ions have concentration of H ⁺ i	ons > concentration of OH ⁻ ions								
19			EC alkaline solu	itions have concentration of OI	1 ions > concentration of H ions								
0010			ED neutral solu	Itions have concentration of H	lohs = concentration of OH lohs								
2010		58	B	ase: Compound which neutralise	es an acid to form water								
22			Alkali	S (metal hydroxides) Metal oxic	es Metal carbonates								
			☑A during neut	ralisation: pH of acid increases	sup to pH=7								
2010	٨	88	⊠B during neut	ralisation: pH of acid increases	up to pH=7								
23	A		■C during neut	ralisation: pH of an alkali decre	ases down to pH=7								
			≥D during neut	ralisation: pH of an alkali decre	eases down to pH=7								
			Pb ²⁺ +	$2NO_3^-$ + $2Na^+$ + $2I^- \rightarrow$	Pb²+(I⁻) ₂ + 2Na⁺ + 2NO₃⁻								
2010			С	ancel out any spectator ions wh	ich appear on both sides								
26	A	84	Pb ²⁺ +	$2NQ_3^-$ + $2Nq^+$ + $2I^- \rightarrow$	$Pb^{2+}(I^{-})_{2} + 2Na^{+} + 2NO_{3}^{-}$								
20	•••	•••		Re-write equation omitti	ng spectator ions								
			Pb ²⁺	+ 2I ⁻ →	Pb ²⁺ (I ⁻) ₂								
			🗹 A Sodium oxi	de is a metal oxide ∴ dissolves	in water to form an alkali (pH>7)								
2011	Λ	40	🗷 B Aluminium d	oxide is insoluble in water (p8 o	f data booklet)								
21	A	00	⊠C Sulphur dio	xide is a non-metal oxide ∴diss	solves in water to form an acid (pH<7)								
			⊠D Silver oxid	e is insoluble in water (p8 of da	ta booklet)								
2011			⊠A H⁺ ion conc	entration decreases as acid is a	diluted with water								
2011	R	74	B H ⁺ ion conc	entration decreases and pH of	acid increases to pH=7 when diluted.								
22		/ '	⊠C pH of acid	will increase up to pH=7 when d	iluted with water								
			D pH of acid	will increase up to pH=/ when c	liluted with water								
2011			MA calcium carb	onate + hydrochloric acid	alcium chloride + water + carbon dioxide								
21	A	88	Sopper oxide	t reactive enough to react with hy	drachlanic acid								
64			E manesium +	sulphuric acid - magnesiu	m sulphate + hydrogen								
			Ц+	$NO_2^- + K^+ + OU^$	$K^{+} + N\Omega_{2}^{-} + H_{2}\Omega_{2}$								
0044				ancel out any spectator ione wh	ich annear an bath sides								
2011) 90		$N \rho_2^- + V + \Omega U^$	+ Ma^{-} + $H_{2}O$								
25	υ			Re-write equation omittin	a spectator ions								
			1 1+										
			н	+ 0H -	H ₂ U								

²⁰¹² 21	В	66	Soluble metal oxides dissolve in water to form alkalis but zinc oxide is insoluble. When added to water, zinc oxide would not change the pH of water (pH=7).
²⁰¹² 22	В	61	Neutralisation reactions involve the reaction of H ⁺ ions and OH ⁻ ions to form water.
²⁰¹³ 18	С	83	 A all solutions contain hydrogen ions and hydroxide ions at all times B neutral solutions contain equal numbers of hydrogen and hydroxide ions C alkaline solutions contain more hydroxide ions than hydrogen ions acidic solutions contain more hydrogen ions than hydroxide ions
²⁰¹³ 20	A	78	☑A as pH rises from 3 to 6, concentration of H ⁺ ions decreases ☑B OH ⁻ ions increase in number as pH rises from 3 to 6 ☑C at pH=6, concentration of H ⁺ ions is greater than concentration of OH ⁻ ions ☑D as pH rises from 3 to 6, concentration of H ⁺ ions decreases
²⁰¹³ 22	A	59	Bases are compounds which neutralise acids and form water e.g. alkalis (metal hydroxides), metal oxides and metal carbonates
²⁰¹³ 23	D	40	 A Argon is an insoluble Noble Gas and does not give react with acidic solutions B Oxygen is an insoluble gas and does not give react with acidic solutions C Ammonia dissolves in water to form an alkali would not react with an alkali Nitrogen dioxide forms an acidic solution and would react with alkali
²⁰¹⁴ 20	С	79	 A All aqueous solutions contain both hydrogen and hydroxide solutions B All aqueous solutions contain both hydrogen and hydroxide solutions C Acids contain more hydrogen ions than hydroxide ions Alkalis contain more hydroxide ions than hydrogen ions
²⁰¹⁴ 22	A	68	 ☑A calcium oxide is a soluble metal oxide which dissolves to form an alkali ☑B nickel oxide is a non-soluble metal oxide so has no effect on pH ☑C nitrogen dioxide is a soluble non-metal oxide and dissolves to form an acid ☑D sulphur dioxide is a soluble non-metal oxide and dissolves to form an acid
²⁰¹⁴ 23	В	56	 ☑ A no gas produced: magnesium hydroxide + hydrochloric acid → magnesium chloride + water ☑ B CO₂ produced: magnesium carbonate + hydrochloric acid → magnesium chloride + water + CO₂ ☑ C no gas produced: magnesium oxide + hydrochloric acid → magnesium chloride + water ☑ D flammable gas produced: magnesium + hydrochloric acid → magnesium chloride + hydrogen
²⁰¹⁵ 24	В	83	 ☑A carbon dioxide is a non-metal oxide which dissolves in water to form an acid ☑B copper oxide is not soluble in water and would not change the pH of water ☑C sodium oxide is a metal oxide which dissolves in water to form an alkali ☑D sulphur dioxide is a non-metal oxide which dissolves in water to form an acid
²⁰¹⁵ 25	В	55	 A sodium carbonate + hydrochloric acid sodium chloride + water + carbon dioxide B sodium chloride does not react with hydrochloric acid as it is not a base C sodium hydroxide + hydrochloric acid sodium chloride + water Sodium oxide + hydrochloric acid sodium chloride + water
²⁰¹⁵ 26	С	55	 A copper metal does not react with dilute acid as copper is below hydrogen in ECS B copper oxide + hydrochloric acid copper chloride + water copper carbonate + hydrochloric acid copper chloride + water + carbon dioxide copper hydroxide + hydrochloric acid copper chloride + water

Int2	Answer	Reasoning						
2000		Neutralisation: acid H^{\star} ions reacting to become water H_2O						
11c	Neutralisation	acid + alkali (metal hydroxide)> salt + water acid + metal oxide> salt + water acid + metal carbonate> salt + water + carbon dioxide						
2000	Neutralised when adding	$MgCO_3 + H_2SO_4 \rightarrow MgSO_4 + H_2O + CO_2 \underline{or} Mg + H_2SO_4 \rightarrow MgSO_4 + H_2$						
15a	further solid it doesn't start fizzing again	When the sulphuric acid runs out, $MgCO_3$ or Mg is in excess. To be sure no acid is left, a little extra solid is added to check there is no fizzing (which would indicate that acid is left)						
2000	Filter excess solid	Filtration: Filtering removes the excess solid added in the neutralisation						
15b	Evaporate solution to get crystals	Evaporation: Boiling the solution removes the water leaving crystals of MgSO4						
		n o. of mol acid = v olume × c oncentration = 0.0225 × 0.1 = 0.00225mol						
2000		$2NaOH + H_2SO_4 \longrightarrow NaSO_4 + 2H_2O$						
16	0.18mol l ⁻¹	2mol 1mol						
10		0.00450mol 0.00225mol						
		$concentration = \frac{n0.07 \text{ mol}}{\text{volume}} = \frac{0.00450 \text{ mol}}{0.025 \text{ litres}} = 0.18 \text{ mol } l^{-1}$						
		$Ba^{2+} + 2Cl^{-} + 2Na^{+} + SO_4^{2-} \rightarrow Ba^{2+}SO_4^{2-} + 2Na^{+} + 2Cl^{-}$						
2001		Cancel out any spectator ions which appear on both sides						
12a(i)	Ba ²⁺ +SO4 ²⁻ →Ba ²⁺ SO4 ²⁻	$Ba^{2+} + 28i^{-} + 2Na^{+} + 504^{2-} \rightarrow Ba^{2+}S04^{2-} + 2Na^{+} + 28i^{-}$						
		Re-write equation omitting spectator ions Ba^{2+} + $SO_4^{2-} \rightarrow Ba^{2+}SO_4^{2-}$						
		no. of mol alkali = volume × concentration = 0.020 × 0.1 = 0.002mol						
		$2KOH + H_2SO_4 \longrightarrow N_0SO_4 + 2H_2O_4$						
2001	0 008 m al 1 ⁻¹	2mol 1mol						
12b	0.008mol (*	0.002mol 0.001mol						
		concentration = $\frac{\text{no. of mol}}{\text{volume}}$ = $\frac{0.001 \text{ mol}}{0.0125 \text{ litres}}$ = 0.08 mol l ⁻¹						
2002	Neutralization	acid + alkali (metal hydroxide) —> salt + water						
7b	neutralisation	acia + metal oxide — Sait + water acid + metal carbonate — Salt + water + carbon dioxide						
		n o. of mol acid = v olume × c oncentration = 0.0224 × 0.1 = 0.00224mol						
2002		$Na_2CO_3 + 2HCI \longrightarrow 2NaCI + CO_2 + H_2O$						
2002	0.0448	1mol 2mol						
8d		0.00112mol 0.00224mol						
		concentration = $\frac{\text{no. of mol}}{\text{volume}}$ = $\frac{0.00112 \text{ mol}}{0.025 \text{ litres}}$ = 0.0448 mol l ⁻¹						
		$(Na^{+})_2S_2O_3^{2-} + 2H^{+}CI^{-} \rightarrow 2Na^{+}CI^{-} + 5 + SO_2 + H_2O$						
	$S_2O_3^{-+2H^+}$	Split up compounds into separate ions						
2002	1	$2Na^{+} + S_2O_3^{-} + 2H^{+} + 2CI^{-} \rightarrow 2Na^{+} + 2CI^{-} + 5 + SO_2 + H_2O$						
9a	\checkmark	Curricel out any spectator ions which appear on both sides $2Na^{+} + S_2O_2^{2^{-}} + 2H^{+} + 2et^{-} \rightarrow 2Na^{+} + 2et^{-} \pm S_{-} + S_{-} + 2H^{-}$						
	S+SO2+H2O	Re-write equation omitting spectator ions						
		$S_2O_3^{2-} + 2H^+ \rightarrow S + SO_2 + H_2O$						

		n o. of mol alkali = v olume × c oncentration = 0.0334 × 0.5 = 0.0167mol
2002		$CH_3COOH + NaOH \longrightarrow CH_3COONa + H_2O$
2003	0.835	1mol 1mol
80		0.0167mol 0.0167mol
		concentration = $\frac{\text{no. of mol}}{\text{volume}}$ = $\frac{0.0167\text{mol}}{0.02 \text{ litres}}$ = 0.835 mol l ⁻¹
2003	Add solid until no	sulphuric + magnesium
9a	more bubbles form	acid carbonate sulphate dioxide
2003	To ensure all acid is	acid + magnesium
9b	neutralised	Solid is added and acid stirred until acid stops bubbling. Once enough solid has been added and the mixture doesn't start to bubble again, all the acid
2003	Step 2 filtration	has been neutralised. The excess solid is removed by filtration and the
9c	Step 3 evaporation	salt solution is evaporated to make the new substance.
2004 6a	$2H^{+} + 2OH^{-} \rightarrow 2H_{2}O$ or $H^{+} + OH^{-} \rightarrow H_{2}O$	$2NH_{4^{+}} + 2OH^{-} + 2H^{+} + SO_{4}^{2^{-}} \rightarrow 2NH_{4^{+}} + SO_{4}^{2^{-}} + 2H_{2}O$ Cancel out any spectator ions which appear on both sides $2NH_{4^{+}} + 2OH^{-} + 2H^{+} + SO_{4^{2^{-}}} \rightarrow 2NH_{4^{+}} + SO_{4^{2^{-}}} + 2H_{2}O$ Re-write equation omitting spectator ions
		$2OH^{-} + 2H^{+} \rightarrow 2H_{2}O$
2004		acid + alkali (metal hydroxide)> salt + water
8a	Neutralisation	acid + metal oxide → salt + water acid + metal carbonate → salt + water + carbon dioxide
		n o. of mol acid = v olume x c oncentration = 0.0246 x 0.1 = 0.00246mol
2004		$KOH + HNO_3 \longrightarrow KNO_3 + H_2O$
2004	0 122	1 mal 1 mal
1/6	0.123 mol (-	1001 1001
16b	0.123 mol (-	0.00246mol 0.00246mol
16b	0.123 mol (-	$\begin{array}{c} 1 \text{ mor} \\ 0.00246 \text{ mol} \\ \hline \textbf{c} \text{oncentration} = \frac{\textbf{no. of mol}}{\textbf{volume}} = \frac{0.00246 \text{ mol}}{0.02 \text{ litres}} = 0.123 \text{ mol} \text{ l}^{-1} \end{array}$
16b	0.123 mol (-	$\frac{100}{0.00246 \text{mol}} = \frac{0.00246 \text{mol}}{0.00246 \text{mol}} = 0.123 \text{ mol} \text{ l}^{-1}$ $\frac{100}{\text{volume}} = \frac{0.00246 \text{mol}}{0.02 \text{ litres}} = 0.123 \text{ mol} \text{ l}^{-1}$ $\frac{100}{\text{concentration}} = \frac{1000246 \text{mol}}{0.02 \text{ litres}} = 0.123 \text{ mol} \text{ l}^{-1}$
16b 2005	Sodium chloride	$\frac{1001}{0.00246 \text{mol}} = \frac{1001}{0.00246 \text{mol}} = 0.123 \text{ mol} \text{ l}^{-1}$ $\frac{1001}{\text{concentration}} = \frac{1000246 \text{mol}}{\text{volume}} = 0.123 \text{ mol} \text{ l}^{-1}$ $\frac{1001}{\text{Carbonate}} \rightarrow \text{SALT} + \text{WATER} + \frac{\text{Carbon}}{\text{Dioxide}}$
16b 2005 2a(ii)	Sodium chloride	$\frac{1001}{0.00246 \text{mol}} = \frac{1001}{0.00246 \text{mol}} = 0.123 \text{ mol} \text{ l}^{-1}$ $\frac{1001}{\text{concentration}} = \frac{1000246 \text{mol}}{\text{volume}} = 0.123 \text{ mol} \text{ l}^{-1}$ $\frac{1001}{\text{concentration}} = \frac{1000246 \text{mol}}{0.02 \text{ litres}} = 0.123 \text{ mol} \text{ l}^{-1}$ $\frac{1001}{\text{concentration}} = \frac{1000246 \text{mol}}{0.02 \text{ litres}} = 0.123 \text{ mol} \text{ l}^{-1}$ $\frac{1001}{\text{concentration}} = \frac{1000246 \text{mol}}{0.02 \text{ litres}} = 0.123 \text{ mol} \text{ l}^{-1}$ $\frac{1001}{\text{concentration}} = \frac{1000246 \text{mol}}{0.02 \text{ litres}} = 0.123 \text{ mol} \text{ l}^{-1}$ $\frac{1001}{\text{concentration}} = \frac{1000246 \text{mol}}{0.02 \text{ litres}} = 0.123 \text{ mol} \text{ l}^{-1}$ $\frac{1001}{\text{concentration}} = \frac{1000246 \text{mol}}{10002 \text{ litres}} = 0.123 \text{ mol} \text{ l}^{-1}$
16b 2005 2a(ii)	Sodium chloride	$\frac{1 \text{ mor}}{0.00246 \text{ mol}} = \frac{1 \text{ mor}}{0.00246 \text{ mol}} = 0.123 \text{ mol} \text{ l}^{-1}$ $\frac{\text{ACID}}{\text{Carbonate}} + \frac{\text{Metal}}{\text{Carbonate}} \rightarrow SALT + WATER + \frac{\text{Carbon}}{\text{Dioxide}}$ $\frac{\text{hydrochloric}}{\text{acid}} + \frac{\text{sodium}}{\text{carbonate}} \rightarrow \frac{\text{sodium}}{\text{chloride}} + \frac{\text{water}}{\text{water}} + \frac{\text{carbon}}{\text{dioxide}}$
16b 2005 2a(ii) 2005	Sodium chloride	$\frac{100}{0.00246 \text{mol}} = \frac{100}{0.00246 \text{mol}} = 0.123 \text{ mol} \text{ l}^{-1}$ $\frac{100}{\text{concentration}} = \frac{100}{\text{concentration}} = \frac{1000246 \text{mol}}{0.02 \text{ litres}} = 0.123 \text{ mol} \text{ l}^{-1}$ $\frac{100}{\text{concentration}} = \frac{1000246 \text{mol}}{0.02 \text{ litres}} = 0.123 \text{ mol} \text{ l}^{-1}$ $\frac{100}{\text{carbonate}} \rightarrow \frac{1000246 \text{mol}}{0.02 \text{ litres}} = 0.123 \text{ mol} \text{ l}^{-1}$ $\frac{100}{\text{carbonate}} \rightarrow \frac{1000246 \text{mol}}{0.02 \text{ litres}} = 0.123 \text{ mol} \text{ l}^{-1}$ $\frac{100}{\text{carbonate}} \rightarrow \frac{1000246 \text{mol}}{0.02 \text{ litres}} = 0.123 \text{ mol} \text{ l}^{-1}$ $\frac{100}{\text{carbonate}} \rightarrow \frac{1000246 \text{mol}}{0.02 \text{ litres}} = 0.123 \text{ mol} \text{ l}^{-1}$ $\frac{100}{\text{carbonate}} \rightarrow \frac{1000246 \text{mol}}{0.02 \text{ litres}} = 0.123 \text{ mol} \text{ l}^{-1}$ $\frac{100}{\text{carbonate}} \rightarrow \frac{1000246 \text{mol}}{0.02 \text{ litres}} = 0.123 \text{ mol} \text{ l}^{-1}$
16b 2005 2a(ii) 2005 13b(i)	Sodium chloride Ammonia dissolves to form alkaline OH ⁻ ions	$\begin{array}{c} 1 \text{ mor} \\ 0.00246 \text{mol} \\ \text{concentration} = \frac{\text{no. of mol}}{\text{volume}} = \frac{0.00246 \text{mol}}{0.02 \text{ litres}} = 0.123 \text{ mol } l^{-1} \\ \end{array}$ $\begin{array}{c} ACID + \frac{\text{Metal}}{\text{Carbonate}} \rightarrow SALT + WATER + \frac{\text{Carbon}}{\text{Dioxide}} \\ \text{hydrochloric} + sodium \\ \text{acid} + carbonate} \rightarrow \frac{\text{sodium}}{\text{chloride}} + water + \frac{\text{carbon}}{\text{dioxide}} \\ \end{array}$ $\begin{array}{c} Ammonia \text{ dissolves in water to form the weak alkali ammonium hydroxide.} \\ Only a \text{ few molecules dissociate into ions.} \end{array}$
16b 2005 2a(ii) 2005 13b(i) 2005	Sodium chloride Ammonia dissolves to form alkaline OH ⁻ ions	$\frac{1}{0.00246 \text{mol}} = \frac{1}{0.00246 \text{mol}} = \frac{0.00246 \text{mol}}{0.02 \text{ litres}} = 0.123 \text{ mol} \text{ l}^{-1}$ $\frac{1}{1}$ $\frac{1}$
16b 2005 2a(ii) 2005 13b(i) 2005 13b(ii)	Sodium chloride Ammonia dissolves to form alkaline OH ⁻ ions Reaction is reversible	$\begin{array}{c} 1 \text{ mon} \\ 0.00246 \text{ mol} \\ \text{concentration} = \frac{\text{no. of mol}}{\text{volume}} = \frac{0.00246 \text{mol}}{0.02 \text{ litres}} = 0.123 \text{ mol } 1^{-1} \\ \hline \\ ACID + \frac{\text{Metal}}{\text{Carbonate}} \rightarrow SALT + WATER + \frac{\text{Carbon}}{\text{Dioxide}} \\ \frac{\text{hydrochloric}}{\text{acid}} + \frac{\text{sodium}}{\text{carbonate}} \rightarrow \frac{\text{sodium}}{\text{chloride}} + \frac{\text{water}}{\text{water}} + \frac{\text{carbon}}{\text{dioxide}} \\ \hline \\ Ammonia \text{ dissolves in water to form the weak alkali ammonium hydroxide.} \\ Only a few molecules dissociate into ions. \\ \hline \\ \\ Some reactions are reversible where the forward reaction and reverse} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
16b 2005 2a(ii) 2005 13b(i) 2005 13b(ii) 2005	Sodium chloride Ammonia dissolves to form alkaline OH ⁻ ions Reaction is reversible	$\begin{array}{rcl} 11101 & 11101 \\ 0.00246 \text{mol} & 0.00246 \text{mol} \\ \hline concentration = \frac{\text{no. of mol}}{\text{volume}} = \frac{0.00246 \text{mol}}{0.02 \text{ litres}} = 0.123 \text{ mol } 1^{-1} \\ \hline \\ ACID & + \begin{array}{c} \text{Metal} \\ \text{Carbonate} \end{array} \rightarrow SALT + WATER + \begin{array}{c} \text{Carbon} \\ \text{Dioxide} \end{array} \\ \hline \\ hydrochloric \\ acid \end{array} \rightarrow \begin{array}{c} \text{sodium} \\ carbonate \end{array} \rightarrow \begin{array}{c} \text{sodium} \\ chloride \end{array} + \begin{array}{c} water \end{array} + \begin{array}{c} \begin{array}{c} \text{Carbon} \\ \text{Dioxide} \end{array} \\ \hline \\ dioxide \end{array} \\ \hline \\ Ammonia \ dissolves in water to form the weak alkali ammonium hydroxide. \\ Only a few molecules dissociate into ions. \end{array} \\ \hline \\ \text{Some reactions are reversible where the forward reaction and reverse reactions both take place. Equilibrium is formed when the rate of the forward reaction. \\ \hline \\ ACID & + \begin{array}{c} ALKALI \longrightarrow SALT + WATFR \end{array} \\ \hline \\ \end{array}$
16b 2005 2a(ii) 2005 13b(i) 2005 13b(ii) 2005 13b(ii)	Sodium chloride Ammonia dissolves to form alkaline OH ⁻ ions Reaction is reversible Neutralisation	$\frac{1}{0.00246 \text{mol}} = \frac{1}{0.00246 \text{mol}} = \frac{1}{0.00246 \text{mol}} = 0.123 \text{ mol} \text{ t}^{-1}$ $\frac{1}{1}$
16b 2005 2a(ii) 2005 13b(i) 2005 13b(ii) 2005 13b(ii)	Sodium chloride Ammonia dissolves to form alkaline OH ⁻ ions Reaction is reversible Neutralisation	$\frac{1}{100} + \frac{1}{100} + \frac{1}$
16b 2005 2a(ii) 2005 13b(i) 2005 13b(ii) 2005 14b	Sodium chloride Ammonia dissolves to form alkaline OH ⁻ ions Reaction is reversible Neutralisation	$\begin{array}{rcl} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $
16b 2005 2a(ii) 2005 13b(i) 2005 13b(ii) 2005 14b 2006	Sodium chloride Ammonia dissolves to form alkaline OH ⁻ ions Reaction is reversible Neutralisation	IntoiIntoi0.00246mol0.00246molconcentration = $\frac{\mathbf{no.} \text{ of mol}}{\text{volume}}$ = $\frac{0.00246\text{mol}}{0.02 \text{ litres}}$ = $0.123 \text{ mol } 1^{-1}$ ACID+Metal \rightarrow SALT+WATER+Carbon Dioxidehydrochloric acid+sodium carbonate+water+carbon dioxideAmmonia dissolves in water to form the weak alkali ammonium hydroxide. Only a few molecules dissociate into ionsSome reactions are reversible where the forward reaction and reverse reactions both take place. Equilibrium is formed when the rate of the forward reaction equals the rate of the reverse reactionWATERACID+ALKALI→SALT+WATERhydrochloric acid+magnesium hydroxide+waterPb ²⁺ +2NO3 ⁻ +2K ⁺ +2NO3 ⁻ Cancel out any spectator ions which appear on both sides
16b 2005 2a(ii) 2005 13b(i) 2005 13b(ii) 2005 13b(ii) 2005 14b	O.123 molt ⁻ Sodium chloride Ammonia dissolves to form alkaline OH ⁻ ions Reaction is reversible Neutralisation Pb ²⁺ +2I ⁻ → Pb ²⁺ (I ⁻) ₂	$\frac{1}{100} + \frac{1}{100} + \frac{1}$
16b 2005 2a(ii) 2005 13b(i) 2005 13b(ii) 2005 13b(ii) 2005 14b 2006 11b(i)	O.123 mort ⁻¹ Sodium chloride Ammonia dissolves to form alkaline OH ⁻ ions Reaction is reversible Neutralisation Pb ²⁺ +2I ⁻ → Pb ²⁺ (I ⁻) ₂	$\frac{1}{100} + \frac{1}{100} + \frac{1}$

2006 11b(ii)	Spectator ions	Ions which appear on both sides of the equation are called spectator ions as they do not take part in the reaction.				
2007 3 b(i)	Neutralisation	$\begin{array}{cccc} ACID & + & METAL & OXIDE & \longrightarrow & SALT & + & WATER \\ & & & & & & & & & & & & & & & & & & $				
2007 9b	CO2 dissolves to make an acid	Type of Oxide Dissolved in water Examples Metal oxide Alkaline solution Sodium oxide Potassium oxide Calcium oxide Non-metal oxide Acidic solution Carbon dioxide Sulphur Dioxide Nitrogen dioxide				
2007 15a	Sulphuric acid	Name of AcidHydrochloric acidSulphuric acidNitric acid2 nd Name of Saltchloridesulphatenitrate				
2008 12a	Carbon dioxide	Sodium hydrogencarbonate will react with acid to release carbon dioxide				
2008 13b	Nitric acid	$\begin{array}{cccc} ACID & + & \begin{array}{c} METAL \\ CARBONATE \end{array} \longrightarrow & SALT & + & WATER & + & \begin{array}{c} CARBON \\ DIOXIDE \\ nitric \\ acid & + & \begin{array}{c} strontium \\ carbonate \end{array} \longrightarrow & \begin{array}{c} strontium \\ nitrate \end{array} & + & water & + & \begin{array}{c} carbon \\ dioxide \end{array} \end{array}$				
2009 12c(ii)	0.25	no. of mol acid = volume x concentration = 0.1 x 1 = 0.1mol 2MnO4 ⁻ + 5C2H2O4 + 6H ⁺ → 2Mn ²⁺ + 10CO2 + 8H2O 2mol 5mol 0.1mol 5mol x ^{0.1} /2 = 0.25mol				
2009 13a	No more solid reacts with acid	The solid will continue to react with the acid, giving off a gas, until the acid is all reacted. The unreacted solid will lie on the bottom of the beaker as it is insoluble.				
2009 13b	To ensure all the acid has reacted	It is important that no acid remains and is all reacted. Using an insoluble solid means that all the acid can be reacted and the excess solid removed by filtration.				
2009 13c	H₂SO4+ MgCO3 ↓ MgSO4+ H₂O + CO2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
2009 15a	OH ⁻ + H⁺ → H₂O	$2Na^{+} + 2OH^{-} + 2H^{+} + SO_{4}^{2-} \rightarrow 2Na^{+} + SO_{4}^{2-} + 2H_{2}O$ Cancel out any spectator ions which appear on both sides $2Na^{+} + 2OH^{-} + 2H^{+} + SO_{4}^{2-} \rightarrow 2Na^{+} + SO_{4}^{2-} + 2H_{2}O$ Re-write equation omitting spectator ions $2OH^{-} + 2H^{+} \rightarrow 2H_{2}O$				
2010 10a	pH value between 0-6	Acidic Neutral Alkaline pH<7 pH=7 pH>7				
2010 13b	0.08mol l ⁻¹	no. of mol acid = volume × concentration = 0.020 × 0.1 = 0.002mol $2NaOH + H_2SO_4 \longrightarrow NaSO_4 + 2H_2O$ 2mol 1mol 0.004mol 0.002mol concentration = $\frac{no. of mol}{volume}$ = $\frac{0.004 mol}{0.05 litres}$ = 0.08 mol l ⁻¹				

		n o. of mol Br ₂ = v olume × c oncentration = 0.016 × 0.5 = 0.008mol
2011 11c(iii)	0.2	$C_{10}H_{16} + 2Br_{2} \longrightarrow C_{10}H_{16}Br_{4}$ $1mol \qquad 2mol$ $0.004mol \qquad 0.008mol$ $concentration = \frac{no. of mol}{volume} = \frac{0.004mol}{0.020 \text{ litrage}} = 0.2 \text{ mol } l^{-1}$
2012 10c	Lowers the pH	Carbon dioxide dissolves in water to form an acidic solution which would react with the alkali in the pH=8.2 and lower the pH.
²⁰¹² 11b	calcium chloride	$\begin{array}{ccc} ACID & + & METAL \\ ACID & + & CARBONATE \\ hydrochloric \\ acid & + & calcium \\ acid & + & carbonate \end{array} \longrightarrow \begin{array}{ccc} SALT + WATER & + & CARBON \\ DIOXIDE \\ + & water & + & carbon \\ chloride & + & water & + & dioxide \end{array}$
2012 13b(i)	Ba²+SO4²-→Ba²+SO4²-	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
2012 13b(ii)	Spectator	Spectator ions are present in a reaction mixture but do not take part in a chemical reaction.
²⁰¹³ 2d	2Na⁺ and 2CI⁻	Spectator ions appear chemically unchanged on both sides of a chemical equation: $2Na^{+}$ appears on both sides of equation $2Na^{+} + S_2O_3^{2^-} + 2H^{+} + 2Cl^{-} \rightarrow 2Na^{+} + 2Cl^{-} + SO_2 + S + H_2O$ $2Cl^{-}$ appears on both sides of equation
2013 13a(i)	Any pH below 7	pHpH below 7pH = 7pH above 7DescriptionAcidicNeutralAlkaline
2014 11a	Sulphuric acid	ACID+METAL \rightarrow SALT+HYDROGENsulphuric acid+magnesium \rightarrow magnesium sulphate+hydrogenH_2SO_4+Mg \rightarrow MgSO_4+H_2
2015 14a(i)	Sulphuric acid	Acid + Metal Salt + Hydrogen Sulphuric acid + Magnesium magnesium sulphate + hydrogen
2015 15a	More hydrogen ions than hydroxide ions	Acidconcentration of H* ionsgreater thanconcentration of OH- ionsNeutralconcentration of H* ionsequal toconcentration of OH- ionsAlkaliconcentration of H* ionsLess thanconcentration of OH- ions
2015 15b (iii)	0.0032	Iodine n = v x c = 0.016 litres x 0.005 mol l ⁻¹ = 0.00008 mol $C_{6}H_{8}O_{6} + I_{2} \rightarrow C_{6}H_{6}O_{6} + 2HI$ $1 mol 1 mol 0.00008 mol 1.1 mol 0.00008 mol 1.1 mol 0.00008 mol 1.1 mol 0.00008 mol 0.00008 mol 0.00008 mol 1.1 mol 0.00008 mol 1.1 mol 0.00008 mol 0.00008 mol 0.00008 mol 1.1 mol 0.00008 mol 0.00008 mol 0.00008 mol 1.1 mol 0.00008 mol 0.0008 mol$

Na	Nat5 Past Paper Question Bank															
Traffic	Lights		l	Jnit	1.4	рΗ	& N	leuti	ralis	atio	n		J	ABC	chei	m
Outcome	<u>2000</u> Credit	<u>2001</u> Credit	<u>2002</u> Credit	<u>2003</u> Credit	<u>2004</u> Credit	<u>2005</u> Credit	<u>2006</u> Credit	<u>2007</u> Credit	<u>2008</u> Credit	<u>2009</u> Credit	<u>2010</u> Credit	<u>2011</u> Credit	<u>2012</u> Credit	<u>2013</u> Credit		
53					5		orcan				5			5		
55 56																
54 57 58												14a				
59 60																
61							13c(ii)									
62																
63																
64						20a										
65a																
65b																
65c										13a				18c		
66		13b			12d			17b					13b(i)			
67			13a	15a					17b(i)		17a			14a		
68																
69					21a			20b(i) 20b(ii)				20c(i)				
70			19b		21b(iii)		18b				19b	20d		18b(ii)		
74							18c									
75 76						14a 14b										

SG Credit	Answer	Reasoning					
2001 <i>C</i>							
13h	nitric acid	Acid Hydrochloric Sulphuric Nitric Salt Name ending chloride sulphate nitrate					
100							
2002 <i>C</i> 13a	Cu + 2Ag⁺→ Cu²+ 2Ag	Cu + $2Ag^{+}$ + $2NO_{3}^{-} \rightarrow Cu^{2+}$ + $2Ag$ + $2NO_{3}^{-}$ Cancel out any spectator ions which appear on both sides Cu + $2Ag^{+}$ + $2NO_{3}^{-} \rightarrow Cu^{2+}$ + $2Ag$ + $2NO_{3}^{-}$ Re-write equation omitting spectator ions Cu + $2Ag^{+} \rightarrow Cu^{2+}$ + $2Ag$					
2002 <i>C</i> 19b	0.0804 mol/l	sodium hydroxide + ethanoic acid → sodium ethanoate + water 1mol 1mol 0.00201mol 0.00201mol concentration = $\frac{no. of mol}{volume} = \frac{0.00201mol}{0.025litres} = 0.0804 mol l^{-1}$					
2003 <i>C</i> 15a	6Cl⁻ + 6Na⁺	Spectator Ions appear on both sides of the arrow					
2004 <i>C</i> 12d	calcium chloride	metal carbonate + acid					
2004C 21a	colour change in flask	Indicator in flask is designed to shown the end point of a chemical reaction accurately.					
2004 <i>C</i> 21b(iii)	0.00824 mol	H2SO4 + 2KOH → K2SO4 + 2H2O 1mol 2mol 0.00412 mol 0.00824mol					
2005C 14a	to ensure all acid has reacted/neutralised	When enough copper carbonate has been added, there will be no acid left in the beaker. Excess copper carbonate will lie on the bottom and the acid will be completely neutralised.					
2005C	Step 4: Filter contents of beaker	Step 4 Filtration: removes the unreacted/excess copper carbonate powder from the bottom of the beaker					
14b	Step 5: Evaporate water	Step 5: Evaporation: turns the filtrate copper chloride solution into crystals of copper chloride					
2005C 20a	Al ₂ (SO ₄) ₃	A salt is formed from the reaction of an acid with either a metal or a base. 2AI + 3H2SO4 → Al2(SO4)3 + 3H2 Metal + Acid → Salt + Hydrogen					
2006 <i>C</i> 13c(ii)	red/orange/yellow	Acidic pH formed as CO_2 dissolves in water to make carbonic acid					
²⁰⁰⁶ <i>C</i> 18b	0.156	no. of mol = volume x concentration = 0.0156 litres x 0.2 mol l ⁻¹ = 0.00312 mol KOH + HCl \rightarrow H ₂ O + KCl 1mol 1mol 0.00312 mol 0.00312 mol concentration = $\frac{\text{no. of mol}}{\text{volume}}$ = $\frac{0.00312 \text{mol}}{0.02 \text{litres}}$ = 0.156 mol l ⁻¹					
2006 <i>C</i> 18c	evaporate water leaving solid KCl	Using evaporation basin and Bunsen burner would be quicker than natural evaporation					

2007C		acid + alkali (metal hydroxide) 🔶 salt + water								
17h	aluminium chloride	hydrochloric acid + aluminium hydroxide — aluminium chloride + water								
20070		$3HCI + AI(OH)_3 \rightarrow AICI_3 + 3H_2O$								
20070	0.1	$1 \text{mol} \qquad 2 \text{mol} $								
20D(i)		0.1mol 0.2mol								
2007 <i>C</i>	100	1mol CaCO3 = (1×40) + (1×12) + (3×12) = 40 + 12 + 48 = 100g								
20b(ii)	10g	m ass = n o. of mol × gfm = 0.1mol × 100g mol ⁻¹ = 10g								
2008 <i>C</i>	2NO - (Spectator ions are ions which appear on both sides of the arrow								
17b(i)	21NO3 (aq)	chemically unchanged. They can be cancelled out of both sides.								
2009C		acid + metal salt + water + u								
130	Neutralisation	carbonate dioxide								
150		acid + carbonate - chloride + water + dioxide								
		$Fe(s) + 2Ag^{+}(aq) + 2NO_{3}^{-}(aq) \rightarrow Fe^{2+}(aq) + 2Ag(s) + 2NO_{3}^{-}(aq)$								
2010C	(NO_3^-)	Cancel out any spectator ions which appear on both sides $Fe(c) + 2Ao^{+}(co) + 2NO^{-}(co) \rightarrow Fe^{2+}(co) + 2Ao(c) + 2NO^{-}(co)$								
17a	circled on both sides	Re-write equation omitting spectator ions								
		$Fe(s) + 2Ag^{+}(aq) \longrightarrow Fe^{2+}(aq) + 2Ag(s)$								
		n o. of mol = volume x concentration = 0.025 litres x 0.1 mol l ⁻¹ = 0.0025 mol								
2010C		HCI + NaOH → H2O + NaCI								
19h	0.25mol/l	1mol 1mol 0.0025mol 0.0025mol								
170		no. of mol 0.0025mol 0.25 mol 1								
		concentration = volume = 0.01 litres = 0.25 mol l ⁻¹								
2011 <i>C</i>	hichon	Solution Acidic Neutral Alkaline								
14a	nighei	$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
2011 <i>C</i>										
20c(i)	Indicator	Indicator is added to change colour at the point of neutralisation								
2011 <i>C</i>		H_2SO_4 + 2KOH \longrightarrow K_2SO_4 + 2 H_2O								
20d	0.001	1mol 2mol								
20120		0.001mol 0.002mol								
12L	MgSO₄	Metal + Acid> Salt + Hydrogen								
13D(i)		$\mathbf{Mg} + \mathbf{H}_2 \mathbf{SO}_4 - \mathbf{Mg} \mathbf{SO}_4 + \mathbf{H}_2$								
		$Zn(s) + Cu^{2+}(aq) + SO_4^{2-}(aq) \rightarrow Zn^{2+}(aq) + Cu(s) + SO_4^{2-}(aq)$								
2013C	SO₄ ²⁻	Cancel out any spectator ions which appear on both sides $7n(x) + Cu^{2+}(x) + 5Cr^{2+}(x) \rightarrow 7n^{2+}(x) + Cu(x) + 5Cr^{2+}(x)$								
14a		Re-write equation omitting spectator ions								
		$Zn(s) + Cu^{2+}(aq) \longrightarrow Zn^{2+}(aq) + Cu(s)$								
2013C	0.04	$n_0. of mol = 0.001 mol = 0.04 mol + 1.1$								
18b(ii)	0.04	volume = 0.025 litres = 0.04 mol (
20136		acid + metal salt + water + carbon								
180	sodium sulphate	carbonate dioxide								
100		acid + carbonate + sulphate + water + dioxide								

Na	t5			Pas	st Pa	aper	Que	estic	on B	ank			-	A D	yright	
Traffic	Lights		l	Jnit	1.4	рН	& N	leuti	ralis	atio	n		J	A150	che	m
Outcome	<u>2000</u> General	<u>2001</u> General	2002 General	2003 General	2004 General	2005 General	<u>2006</u> General	2007 General	2008 General	2009 General	<u>2010</u> General	<u>2011</u> General	<u>2012</u> General	<u>2013</u> General		
53	16a 16b		13c		12a		18a	11c	11b 21a			17b(i) 17b(ii)	13a(i) 13a(ii)			
55 56																
54 57 58				11b				11e					13b	16a		
59 60								11d				17c				
61		9a (i)											17c			
62		9a (ii)														
63																
64																
65a			16a	16b												
65b													20a(ii)			
65c	17a 17b															
66																
67																
68																
69																
70																
74																
75 76	17c		16b													

SG General	Answer	Reasoning							
2000 <i>G</i>		Put pH paper into substance being tested. Match the colour on the pH							
16a	answer to include:	paper against the pH chart colours and convert this colour into pH value.							
2000 <i>G</i>		The lower the pH, the more acidic the solution is. Fizz Alive has lowest							
16b	Fizz Alive	pH so is the most acidic and could cause tooth decay.							
2000G									
17a	neutralisation	acid + acid + acid + water + dioxide							
2000 <i>G</i>	aanhan diaxida	sulphuric zinc zinc carbon							
17b	carbon dioxide	acid + carbonate - sulphate + water + dioxide							
2000 <i>G</i>	allacid	Zinc carbonate is added to sulphuric acid and neutralises the acid. If							
17c	is neutralised	neutralised. The excess zinc carbonate is insoluble in the soluble and can							
1/0	le neurr anood	be removed by filtration.							
2001 <i>G</i>	pH below 7	Carbon is a non-metal and sodium is a metal.							
9a (i)	pH above 7	• Carbon Dioxide is a non-metal oxide and forms an acid when dissolved in water Sodium Oxide is a metal oxide and forms an alkali when dissolved in water							
2001 <i>G</i>									
9a (ii)	Al ₂ O ₃ is insoluble	Any substance which is insoluble in water cannot have a pH value							
2002 <i>G</i>		Sulphur dioxide dissolves in water to form an acid.							
13c	pH less than 7	Acidic Neutral Alkaline pH<7 pH=7 pH>7							
2002 <i>G</i>		acid + metal oxide → salt + water							
16a	neutralisation	sulphuric acid + copper oxide — copper sulphate + water							
2002 <i>G</i>		Excess copper oxide must be added to sulphuric acid to ensure all acid							
16b	filtration	has been neutralised. As copper oxide is insoluble in water it can be							
20026		removed from the solution by filtration.							
20030 11L	hydrogen or H⁺	All acids contain more of the hydrogen ion (H * ion)							
2003G	neutralisation	ACID + METAL OXIDE → SALT + WATER							
16b		hydrochloric acid + magnesium oxide → magnesium chloride + water							
2004 <i>G</i>	bleach & detergent	acidic neutral alkaline							
12a	bleach à derei genn	pH<7 pH=7 pH>7							
2006 <i>G</i>	٨	laws at all some a sidie some at is a meret sole at some and will flow							
18a	A	lowest pm most aciaic most ions present highest current will flow							
2007 <i>G</i>	[≟] mark: Add indicator/pH paper	The colour achieve with universal indicator/pH paper should be matched							
11c	½ mark: Check colour against chart	against the colour chart and the closest match is the pH number of the solution.							
2007 <i>G</i>	_								
11d	Increase	pH of acids is below 7. Dilution of acids with water makes pH increase to 7.							
2007 <i>G</i>	Hydrogen ion	Acids contain more of the hydrogen ion (H*)							
11e	or H ⁺ ion	Alkalis contain more of the hydroxide ion (OH ⁻)							

2008 <i>G</i>		Type of solution Acidic Neutral Alkaline									
11b	alkaline	Universal Indicator red green blue/purple pH pH less than 7 pH = 7 pH greater than 7									
20086		Fizzy drinks have CO2 dissolved in them									
21.0	any pH below 7	 CO₂ dissolved in water forms the weak acid carbonic acid 									
210		Acids have a pH below 7									
2011G		Add pH paper or Universal Indicator									
17b(i)	answer to include:	• match colour with pH chart read matching pH number to colour									
2011G											
17b(ii)	Any pH below 7	pH must be below 7 but vinegar is a weak acid so pH is in 3-6 range									
2011G		Lemon juice is an acid with a pH below 7. Diluting lemon juice with water									
17c	increases	will increase the pH until it reaches pH=7									
2012G		0 1 2 3 4 5 6 7 8 9 10 11 12 13 14									
13a(i)	A	increasing acidity neutral increasing alkalinity									
2012G		pH=6 ethanoic acid contains less ions than pH=5 ethanoic acid									
13a(ii)	1-4mA	\therefore pH=6 Ethanoic acid will have a smaller current than pH=5 ethanoic acid									
2012G		All acids contain Hydrogen H ⁺ ions. All alkalis contain the hydroxide OH ⁻ ion.									
13b	Hydrogen or H ⁺	Neutral solutions contain equal concentrations of H^+ ions and OH^- ions.									
2012G		Oxide Type pH in water Examples									
17c	Any pH 0→6	Metal oxideMetal oxides dissolve in water to form alkalisK2O, Na2ONon-metal oxideNon-metal oxides dissolve in water for form acidsCO2, NO2, SO2									
2012 <i>G</i> 20a(ii)	water	potassium + hydrochloric → potassium + water hydroxide + acid → chloride + water metal hydroxide + acid → salt + water									
2013 16a	Increases	(alkali) Acids have a pH below 7. Indigestion tablets neutralise acid and will increase pH up to 7									